

SEPRAPOX 55°

CARACTÈRES GÉNÉRAUX

- Forte adhérence sur béton et sur métal
- Durcissement en milieu humide
- ♦ Inertie à l'eau et aux agents chimiques

DOMAINES D'APPLICATION

- Imprégnation des éléments jointifs sans épaisseur, tout en assurant une étanchéité parfaite et rapide.
- Primaire d'accrochage des sols industriels;
- Reprises de bétonnage entre béton frais et béton existant;
- Reprises de bétonnage pour renforcement structurel des poutres et piliers;
- ♦ Reprises de bétonnage pour la réalisation des joints rigides imperméables (radiers, murs d'élévation, bassins...);
- Traitement & remplissage des fissures dans le béton;
- Accrochage béton et mortier frais au support ou structure métallique.

CONDITIONS D'APPLICATION

1. PRÉPARATION DU SUPPORT

- Les surfaces à traiter doivent être propres, sèches, saines et solides.
- Éliminer toutes parties non adhérentes, friables ou de faible cohésion ainsi que toutes substances pouvant nuire à l'adhérence.
- Les fers apparents ou les surfaces métalliques seront mis à nu par brossage ou par sablage. Il est conseillé d'effectuer un sablage et de décaper les armatures « à fer blanc ».

Indications importantes

- ♦ Ne pas appliquer SEPRAPOX 55 à des températures inférieures à +5°C.
- ♦ Ne pas appliquer SEPRAPOX 55 sur des supports mouillés (un support légèrement humide est toléré)
- Ne pas bétonner sur une surface SEPRAPOX55 qui a déjà durci.
- ♦ Ne pas appliquer SEPRAPOX 55 sur des supports friables et poussiéreux.

2. PRÉPARATION DU MÉLANGE (RÉSINE PURE)

Mélanger la résine (composant A) et le durcisseur (composant B); veiller à bien vider la totalité du durcisseur dans la résine.

- Le mélange des deux composants se fera de préférence avec une perceuse à rotation lente munie d'une spirale.
- Mélanger soigneusement! Remuer bien sur les côtés et au fond pour répartir uniformément le durcisseur aussi du haut en bas.
- Remuer jusqu'à l'obtention d'un mélange

3. PRÉPARATION DU MÉLANGE (MORTIER)

Le mortier SEPRAPOX 55 doit se mélanger dans un malaxeur à béton.

Le mélange SEPRAPOX 55 (composant A et B) est mis en premier et les charges sont graduellement ajoutées dans le malaxeur.

♦ Afin d'obtenir un mélange homogène, il est préférable d'ajouter la plus grosse granulométrie, après le mélange de la résine, avec la partie du sable fin.

4. MISE EN ŒUVRE DU MÉLANGE

- ♦ Le mortier est ensuite versé sur le support préalablement imprégné, puis tiré à la règle dans l'épaisseur régulière voulue.
- ♦ Compacter ou aplanir la surface du mortier avec une truelle à disque ou une truelle en acier.
- Pour remplir d'éventuels pores et pour sceller la surface, appliquer une couche de SEPRAPOX 55 au rouleau particulièrement pour les mortiers au rapport de mélange de plus 1 : 9 .
- ♦ Afin d'augmenter l'effet antidérapant, on peut saupoudrer la surface du mortier avec un sable de quartz fin sec (granulométrie 0.5 -0.75 mm).

Exemples d'utilisation:

Selon la plasticité désirée du mortier, fluide ou spatulable et suivant les épaisseurs de couches exigées, il est possible de choisir les compositions suivantes de mortier à base de résine :

1) Mortier fluide

- ♦ 1 partie en poids SEPRAPOX 55
- 4 parties en poids sable de quartz dans la composition suivante :
- √ 35 % sable de quartz 0.08 à 0.2 mm
- √ 65 % sable de quartz 0.8 à 1.2 mm

2) Mortier pour revêtement (épaisseur 5 à 10 mm)

- 1 partie en poids SEPRAPOX 55
- 9 parties en poids de sable resp. poudre de quartz dans la composition suivante :
- √ 7.5 % poudre de quartz (0 à 0.5 mm)
- ✓ 37.5 % sable de quartz (0.08 à 0.2 mm)
- √ 55 % sable de quartz (0.8 à 1.2 mm)

3) Mortier pour revêtement (de 8 à 15 mm d'épais)

- ♦ 1 partie en poids SEPRAPOX 55
- ♦ 10 Parties en poids de sable de quartz dans la composition suivante :
- √ 35 % sable de quartz (0.08 à 0.2 mm)
- √ 30 % sable de quartz (0.1 à 0.7 mm)
- √ 35 % sable de quartz (3.0 à 5.0 mm)

Attention:

- ♦ Toujours utiliser du sable de quartz sec.
- ♦ Les compositions susmentionnées sont données à titre indicatif et doivent être adaptées aux circonstances et exigences du chantier, si nécessaire, on procédera à des essais préliminaires pour obtenir la composition optimale.

INSTRUCTIONS DE SÉCURITÉ POUR LA PRÉPARATION & LA MISE EN ŒUVRE

- Les deux composants de SEPRAPOX 55 (A+B) sont irritants par contact direct sur la peau.
- Porter des gants pendant toute la phase d'application et utiliser des lunettes de protection durant le mélange des deux composants.
- ♦ Lors de contact direct sur la peau, laver abondamment à l'eau et au savon.
- Si des démangeasons se manifestent, consulter un médecin.
- O Dans le cas de contact avec les yeux, laver abondamment à l'eau courante et consulter un médecin.
- ♦ SEPRAPOX 55 composant A est dangereux pour l'environnement aquatique ; éviter le rejet dans l'environnement.

PRODUIT DESTINÉ À UN USAGE PROFESSIONNEL

SEPRAPOX 60°

PRÉSENTATION

- ♦ Résine époxydique à 2 composants, sans solvant, avec durcisseur formulé à base d'amine
- ♦ Peinture époxy bi-composants, sans solvant, constituée de deux composants pré-dosés (comp. A = résine et comp. B = durcisseur) qui doivent être mélangés avant l'application.
- ♦ Rapport de l'institut d'Hygiène Allemand / Rapport de l'institut d'Hygiène Suisse.
- ♦ Rapport d'essai du Laboratoire GEOCISA Madrid.

DONNÉES TECHNIQUES

Viscosité à 20° C Env. 3000 CPS Densité à 20°C 1,40 g/cm³ Temps de traitement à 10°C 90 min Temps de traitement à 20°C 45 min Temps de traitement à 30°C 15 min 8°C T° min. de durcissement Hors poussière à 20°C 2 h Praticable à 20°C 24 h Durcissement complet à 20°C 7 jours Possibilité de retouche à 30° C 5-24 h Retrait en volume **2**% **Retrait linéaire** 0,2% Résistance à la pression 80 N/mm² 34 N /mm² Résistance à la traction de pliage Résistance à la traction 23 N/mm² 40000 N/mm² Module E à 20°C 60.10⁻⁶C⁻¹ Dilatation thermique à 20°C Dureté de pendule selon Konig 140 - 160 SEC. Dureté de crayon 2 - 3 h Indice d'emboutissage 2 mm **Abrasion selon DIN 52108** 4 cm3/50 cm2 Température de verre 60°C Adhérence au béton après stockage à des températures variables: Rupture du béton Propriétés de décontamination selon DIN 24415: Très bonne

RÉSISTANCE AUX AGENTS CHIMIQUES Explication :

 $\mathbf{x} =$ aucune modification

xo = modification de couleur resp. gonflement : charge de courte durée possible

ACIDES	
Acide chlorhydrique jusqu'à 20 %	X
Acide nitrique jusqu'à 10 %	X
Acide sulfurique jusqu'à 20 %	X
Acide phosphorique jusqu'à 20 %	X
Acide formique jusqu'à 2 %	X
Acide lactique jusqu'à 3 %	X
Acide tannique jusqu'à 10 %	ХО
SOLUTIONS AQUEUSES	
phénol jusqu'à 1%	X
aldéhyde formique jusqu'à 20 %	X
Sulfite de sodium jusqu'à 20 %	X
Sel de cuisine, saturé	X
Soude, saturée	X
Sel de glauber, saturé	X
Chlorure de magnésium, saturé	X
phosphate de magnésium, saturé	X
Chlorure de calcium, saturé	X
Hydroxyde de calcium, saturé	X
Sulfonate d'acrylalkyle	X
Sulfonate d'alcool gras	X
Eau	X
vin	X
Bière	X
Jus de fruits	X

LESSIVE	
Soude caustique jusqu'à 50 %	X
Potasse jusqu'à 50 %	X
Ammoniaque jusqu'à 10 %	X
SOLVANTS	
Essence	X
Mazout	X
Huile de décoffrage	X
Liquide de freins	X
Huile hydraulique	X
Kérosène	X
Méthanol	хо
Ethanol jusqu'à 96 %	хо
Alcool butylique	X
Acétone	хо
Méthyléthyl cétone	хо
Ether acétique	хо
Ethylglycoacétate	X
Benzol	хо
Toluène	хо
Xylène	X
Produits chimiques des dégivrages (par exemple glycol)	X

La preuve fonctionnelle du produit de revêtement SEPRAPOX 60 fût fournie par une série d'essais sur du béton de la qualité BH 300, 0 - 16 mm, WZF = 0,50

La moitié des échantillons a été traitée de la façon suivante :

Surface * Polie

Apprêt * 300 g/m² SEPRAPOX 50 répandu avec 2 kg de sable siliceux, grain 0,8 — 1,2 mm

Rapport du mélange A/B= (4/1 en poids)

	Traité avec SEPRAPOX 50 / 60	Non traité
Coefficient d'absorption d'eau A kg/m² 10,5	0,003	0,540
Résistance à la vapeur h en m	19,46	1,86
Indice de la résistance à la diffusion Mû (μ)	1555	149

Le produit de revêtement SEPRAPOX 50 / 60 (apprêt et enduction) a également été testé sur des échantillons de 20 x 40 cm d'une épaisseur moyenne de 0,6 à 0,7 mm.

MODULE D'ÉLASTICITÉ

FACTEURS DE DILATATION

Température	unité	Examen d'alcalinité Avant / Aprés		Examen aux rayons UV Avant / Aprés	
+ 20° C	N/mm ²	1029	1436	1029	1205
- 20° C	N/mm ²	1769	-	1769	2228

Température	Unité	Examen d'alcalinité Avant / Aprés		Examen au Avant /	x rayons UV ⁄ Aprés
+ 20° C	Е%	2,07	1,68	2,07	1,74
- 20° C	Е%	1,78	-	1,78	1,30

